Computes silhouette widths using maximum of posterior probabilities as Silhouette.
Usage
cerSilhouette(
prob_matrix,
average = c("crisp", "fuzzy", "median"),
a = 2,
sort = FALSE,
print.summary = FALSE,
clust_fun = NULL,
...
)Arguments
- prob_matrix
A numeric matrix of posterior probabilities where rows represent observations and columns represent clusters. Must sum to 1 by row. If
clust_funis provided,prob_matrixmust be a string giving the name of the matrix component (e.g., "u").- average
Character string specifying the method for computing the average silhouette width. Options are:
"crisp"– unweighted (simple) average."fuzzy"– weighted average based on membership probability differences."median"– median silhouette width across observations.
Defaults to
"crisp".- a
Numeric value controlling the fuzzifier or weight scaling in fuzzy silhouette averaging. Higher values increase the emphasis on strong membership differences. Must be positive. Defaults to
2.- sort
Logical; if
TRUE, sorts the outputwidthsdata frame by cluster and descending silhouette width. Defaults toFALSE.- print.summary
Logical; if
TRUE, prints a summary table of average silhouette widths and sizes for each cluster. Defaults toFALSE.- clust_fun
Optional S3 or S4 function object or function as character string specifying a clustering function that produces the proximity matrix. For example,
fcmor"fcm". If provided,prob_matrixmust be a string giving the name of the matrix component (e.g., "u"). Defaults toNULL.- ...
Additional arguments passed to
clust_fun, such asx, centersforfcm.
Value
A data frame of class "Silhouette" containing cluster assignments, nearest neighbor clusters, silhouette widths for each observation, and weights (for fuzzy clustering). The object includes the following attributes:
- proximity_type
The proximity type used i.e.,
"similarity".- method
The silhouette calculation method used i.e.,
"certainty".- average
Character — the averaging method:
"crisp","fuzzy", or"median".
Details
Let the posterior probability matrix or cluster membership matrix as $$\Gamma = [\gamma_{ik}]_{n \times K},$$ The certainty silhouette width for observation \(i\) is: $$ \mathrm{Cer}_i = \max_{k=1,\dots,K} \gamma_{ik} $$
#' If average = "crisp", the crisp silhouette index is calculated as (\(CS\)) is:
$$
CS = \frac{1}{n} \sum_{i=1}^{n} S(x_i)
$$
summarizing overall clustering quality.
If average = "fuzzy" and prob_matrix is provided, denoted as \(\Gamma = [\gamma_{ik}]_{n \times K}\),
with \(\gamma_{ik}\) representing the probability of observation \(i\) belonging to cluster \(k\),
the fuzzy silhouette index (\(FS\)) is calculated as:
$$
FS = \frac{\sum_{i=1}^{n} w_i S(x_i) }{\sum_{i=1}^{n} w_i}
$$
where \(w_i = \sum_{i=1}^{n} \left( \gamma_{ik} - \max_{k' \neq k} \gamma_{ik'} \right)^{\alpha}\) is weight and \(\alpha\) (the a argument) controls the emphasis on confident assignments.
If average = "median" then median Silhouette is Calculated
References
Bhat Kapu, S., & Kiruthika. (2024). Some density-based silhouette diagnostics for soft clustering algorithms. Communications in Statistics: Case Studies, Data Analysis and Applications, 10(3-4), 221-238. doi:10.1080/23737484.2024.2408534
Examples
# \donttest{
# Compare two soft clustering algorithms using cerSilhouette
# Example: FCM vs. FCM2 on iris data, using average silhouette width as a criterion
data(iris)
if (requireNamespace("ppclust", quietly = TRUE)) {
fcm_result <- ppclust::fcm(iris[, 1:4], 3)
out_fcm <- cerSilhouette(prob_matrix = fcm_result$u, print.summary = TRUE)
plot(out_fcm)
sfcm <- summary(out_fcm, print.summary = FALSE)
} else {
message("Install 'ppclust' to run this example: install.packages('ppclust')")
}
#> ----------------------------------------------
#> Average crisp similarity db silhouette: 0.8572
#> ----------------------------------------------
#>
#> cluster size avg.sil.width
#> 1 1 40 0.8351
#> 2 2 60 0.7826
#> 3 3 50 0.9645
#>
#> Available attributes: names, class, row.names, proximity_type, method, average
if (requireNamespace("ppclust", quietly = TRUE)) {
fcm2_result <- ppclust::fcm2(iris[, 1:4], 3)
out_fcm2 <- cerSilhouette(prob_matrix = fcm2_result$u, print.summary = TRUE)
plot(out_fcm2)
sfcm2 <- summary(out_fcm2, print.summary = FALSE)
} else {
message("Install 'ppclust' to run this example: install.packages('ppclust')")
}
#> ----------------------------------------------
#> Average crisp similarity db silhouette: 0.6236
#> ----------------------------------------------
#>
#> cluster size avg.sil.width
#> 1 1 25 0.5974
#> 2 2 60 0.5371
#> 3 3 65 0.7135
#>
#> Available attributes: names, class, row.names, proximity_type, method, average
# Compare average silhouette widths of fcm and fcm2
if (requireNamespace("ppclust", quietly = TRUE)) {
cat("FCM average silhouette width:", sfcm$avg.width, "\n",
"FCM2 average silhouette width:", sfcm2$avg.width, "\n")
}
#> FCM average silhouette width: 0.8572481
#> FCM2 average silhouette width: 0.6235972
# }
